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Density-fluctuation approach to the classical plasma 
T. GASKELL 
Department of Physics, University of Sheffield 
MS. received 7th June 1967, in revised form 30th October 1967 

Abstract. In a classical fluid, whose potential energy may be expressed in terms of a 
pair potential possessing a Fourier transform, the potential of average force U(r12) is 
closely related to an ensemble average of the reduced density fluctuation 

N 

X exp(-ik.r,). 

A method is developed of evaluating this ensemble average, and the relationship of 
the latter to the three-particle distribution function is explained. The  technique is 
applied to the electron plasma and U(rl2) is evaluated to second order in the standard 
plasma parameter E = e2kn/kBT, a result, which, though not new, is comparatively 
easily derived, and the importance of the correct normalization of the radial distri- 

f = 3  

bution function 

in this problem is stressed. Finally, the possibility of extending the results to values 
of E where a series expansion is completely inappropriate is discussed. 

1. Introduction 
The density-fluctuation approach to a classical fluid is discussed in the first part of the 

paper, and attention is concentrated on the potential of average force U(r,,) defined 
through the radial distribution function g(vI2) by the equation 

It is shown how to write U(rI2)  in terms of an ensemble average of the reduced density 
fluctuation 

2 exp( - ik.  rj) 

and a method of evaluating this ensemble average is developed. Since the latter is closely 
related to the three-particle distribution function, some insight is gained into this also. I n  
the second part the technique is applied to the classical plasma. 

T h e  radial distribution function in an electron plasma has been discussed by a number 
of authors in recent years with a view to calculating the thermodynamic properties of the 
system beyond the Debye-Huckel limit, These investigations have used either diagrammatic 
techniques, starting from Mayer’s cluster expansion (Abe 1959, Bowers and Salpeter 1960, 
De  Witt 1965), or the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy equation 
(Lamb and Burdick 1964, Gurnsey 1964, Fisher 1964, O’Neil and Rostocker 1965, Lie 
and Ichikawa 1966) and have resulted in a correlation energy which is correct to second 
order in the plasma parameter E = e2k,/k,T, where k, is the Debye wave number 
(47~ne~/k ,T)~’~ ,  n being the number density of the electrons. T o  this order, the correlation 
energy is 

N 

j = a  

E 
- = - & E - & ’  IOgE-i(y-$+& 10g3)e2 
AB T 

(1) 

where y = 0.5772 is the Euler constant and - $ E  is the correlation energy within the 
Debye-Huckel approximation. An expression for the potential of average force to second 

21 3 
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order in E is derived here, which, though not new, is comparatively easily obtained once 
the formalism is set up, and the importance of the correct normalization of the radial 
distribution function in this problem is stressed. Recently the radial distribution function 
and thermodynamic properties of a one-component plasma have been investigated, using a 
Monte Carlo method (Brush et al. 1966)) over a very wide range of values of E and the 
existence of a phase change predicted. The  possibility of extending the present approach 
to large values of E ,  where the type of expansion of equation (1) is completely inappropriate, 
is finally discussed. 

2. Equation for the potential of average force 
Let us consider a fluid of N particles in a box of volume V. The radial distribution 

function g(r12) of a system of particles, whose potential energy can be expressed as a sum 
of pair potentials +(ru), is given by 

-1 1 
x [ 1 exp( -- 2 +h)) dr1 a . .  dr,] 

2 k ~ T  i , j ( i  + j )  

in the limit N ,  V +- CO, such that N/V --f n and r12 = [rl-r2\. I n  this case it may be 
written 

g(r12) = V 2 j  exp( - 4 v(k)[exp(ik.r12)+ {exp(ik.rl)+exp(ik.r2)}pk‘ 

where v(k) is the Fourier transform of +(r)/k,T and 

N 

pk‘ = C exp(-ik.rj). 
j = 3  

Hence 

vlg(Y12) = (-i 2 v(k) exp(ik*r12)k-i 2 v(k)  exp(ik*rl) (pk’)k]g(r12) (3)  
k k 

where 

-1 

(4) 
1 

x [ [ exp( - K~ C +(yij)) dr3 . . . dr,] , +(y12) now being omitted. 

Equation (3) is an equation for the potential average force since it may be written 

= 2 iv(k) exp(ik.r,,)k+ 2 iv(h) exp(ik.r,)(p,’)k. v1 U(Y12) 

kBT k k 
( 5 )  

The  evaluation of U(rI2)  therefore requires a calculation of the quantity (pk’), and 
this problem will now be discussed. If we define 

~ ( n )  = exp(in.r,)+exp(in.r,) 
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then we have 

215 

N 1 2 iexp(- ik . r , )k .V,exp[  - 2 a(n){.(n)p,’+~P,’p,’*}] dr, ... drN 
5=3 n 

1 5 V,.[ikexp(-ik.r,)exp[ - 2 v(n){z(n)p,’+:p,’~,’*~]) dr, ... dr,-k2(pk‘) 
,=3 n 

and, since the first term may be converted to a surface integral and hence shown to be zero, 
we have the equation 

1 
( 6 )  

1 
( f k ’ )  = 22 2 ’ ( n ) x ( n ) ( P k t n ) k * n + F z  2’(n)(Pk+nPn’*)k*n* 

n n 

It is more convenient at this stage to define the quantity 

(Pk) = exp(ik*rl) (Pk‘) 
and then equation (5) becomes 

= 2 iv(k) exp(ik.r,,)k+ 2 iu(k)  (pk)k v1 U(YI2) 

kB T k k 
( 7 )  

The  quantity (pk) is a function of k, yl2 and the angle between them, and its connection 
with the three-particle distribution function will now be clarified. 

The  three-particle distribution function of the system, g(r,, r2, r,), is given by 

and hence, using the definition of the radial distribution function given earlier, we have 

For a fluid the three-particle distribution function may be written asg(r, s), where r = r12 
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and s 2= r13, and we may therefore write 

the last step following because we may choose the third particle from any in the system 
apart from 1 and 2. If we express the delta function as the Fourier series 

1 
- 1 exp(ik. (rl - r j  - s)} 
v k  

it follows immediately from (4) that 

and since <Po)  = N - 2  we have 

1 

k#O 

ng(r,,, r13) dr3/g(y12) may be interpreted as the number of particles in volume element 
dr, when particle 1 is at rl and particle 2 at r2. 

3. Application to the electron plasma 

positive charge in a box of volume V,  and for this problem 
We consider a system of N electrons in the presence of a neutralizing background of 

4re2 
kB T Vk2 

c(k) ~ 

the k = 0 component cancelling with the background of positive charge. 

3.1. Random-phase approximation 
It should be noted that ( P o )  = N-2,  though we shall in future ignore the 2, and that 

the random-phase approximation consists in extracting the terms on the right-hand side of 
equation (8) with n = - k. Hence, within this approximation, 

(pk) = -Nv(k){l +exp(ik.r,,)}-Nv(k)(p"k) 
so that 

Nv(k){l +exp(ik.r12)} 
1 + Nv(k) 

(P"k)RPA = - 

Using equation (7) ,  it follows immediately that 

-- U(Y12) - 2 v(k) exp(ik.r,,) 
kBT k 
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and with the usual substitution 
2 -+-J^dk V 
k (25713 

we have 

T h e  three-particle distribution function may also be immediately evaluated and, in fact, 

e2 exp( - kDlrl - r31) e2 exp( - kDlr2 - r3 1 )  
(14) = 1--- -- g(r1, r2, r3) 

A Y l d  kBT Ir1-r3] ~ B T  Irz - 1 3  1 
a result which clearly becomes invalid if the third particle closely approaches either 
particle 1 or 2, but which will have some significance asymptotically. It is the Debye- 
Huckel approximation to this three-particle distribution function. However, the corres- 
ponding radial distribution function 

sometimes referred to as the non-linear Debye-Huckel result, does not suffer from this 
defect as r12 becomes small. I n  terms of the dimensionless quantity x = kDr it becomes 

The  correlation energy is given by 
E n e2 

kBT 2 k ~ T  Y 
- = ~ I dr-- {g(v) - l} 

and with the above approximation for g(Y) we have, to order 2, 
E 

( 1 5 )  -- - - & € - & € E 2  lOgE-&(y+& log2-2)2.  
AB T 

A property of the radial distribution function, which appears to receive little attention is the 
normalization condition, namely 

n J dr{g(r) - 13 = - I .  

This result is a consequence of the model of a plasma we are considering, and guarantees 
the physical requirement that there must be just sufficient positive charge around any one 
electron for the screening to be complete. A more extensive discussion of this point will 
be given in appendix 1. For the present radial distribution function this condition is not 
satisfied, and the normalization integral is always greater than - 1. T o  order c2,  

n 1 dr(g(r) - l} = - 1 + &E + g(log E + log 3 + 2y - +)ez,  

If we insist on the correct normalization of g(r) - 1 before using it to estimate the energy, 
then, to order 2, the result is 

E 
(16) -- - -&€-&€2 lOg€-&(y+& log2-&)2. 

k B  T 
The  exact coefficient of e2 from (1)  is -0.23, that given by (15) is -0.087 and after 
normalization it becomes - 0.21. I n  fact, this simple expression for g(r)  when normalized 
gives surprisingly good results for the energy over a wide range of E ,  as the following table 
shows, where a comparison is made with the recent Monte Carlo calculations of Brush et al. 
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Table 1. Correlation energy in units of kBT 

Normalized 
E Debye-Huckel Normalization Debye-Huckel Monte Carlo Percus-Yevick 

0,01936 -0,00934 0.995 -0,00939 -0.0128 -0.008 
0.05477 -0.0255 0.988 -0,0258 - 0.0270 - 0.020 
1.7321 -0,468 0.871 -0.577 -0,579 -0.539 
4.899 - 0.925 0,673 -1.37 - 1 a338 - 1,448 
6.844 -1.128 0.454 - 1.81 - 1 a729 - 1 a903 

The  results from the Percus-Yevick equation have also been taken from the same 
reference. Of course, if we regard the radial distribution function after normalization as 
1 + {g(r) - l)normalized, then it will have the defect of becoming negative at the origin, 
increasingly so as E increases; but as far as the energy is concerned this seems to be relatively 
unimportant. 

The  non-linear Debye-Hiickel result derives from a calculation of U(rI2) to first order 
j n  E ;  to obtain results to second order, and hence the exact second-order calculation of the 
energy, that is equation (l), a more careful analysis of equation (8) is required and this will 
now be discussed. 

3.2. Second-order approximation to U(r12) 
Equation (8) may be written 

Nv(k){l  +exp(ik.r,,)} 

1 + Nv(k )  
(P"k) = - 

1 1 

It is tempting to decouple the last term and write it as (pk+n)(j?n*), and to attempt to 
solve the resulting integral equation by iteration. This leads to an expansion of U(rI2)  
in terms of E, but does not yield all of the terms up to second order in E. In  fact, we obtain 
as the first term beyond the random-phase approximation 

1 1  U(%) { 1 + exp( - in. rI2)) N v (  1 k + nl ) [ 1 + exp{i(k + n)  . I-,,}] 
- k .  n. 

(18) 
1 + Nv(n) 1 + NE( 1 k + n I ) - 2  - 

1 +Nv(k)  k2 n $  - k  

This consists of a term independent of r12 (which integrates to zero when substituted in ('7)) 
and the following expression : 

1 1  
1 +Nv(k)  Fn# - 

Nz( I k + nl ) 
- U(n)  {exp(ik.r,,)+exp(-in.r12)) 

l+Nv( jk+n j )  1 +Nv(n) 

N v ( l k + n ] )  + exp{i(k + n)  . r123]. 
1 + Nv( I k + nl ) 1 + Nv(n) 

If in the last term we make the substitution k + n  = -s ,  it becomes 

exp( - is. r12) Nv(s) v(lk+sj) - 2 k.(s+k) 
8 1 +Nv(s) 1 +Nv([k+sI )  
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and the first term cancels with the second term in (19), which then becomes 

219 

It is not difficult to show that the contribution this term makes to U(r,,)/k,T is given by 

Replacing the summations by integrals, we obtain 

1 e-u exp(-Z[x-yI) 
e2-/dy- 

45T Y IX-YI2 

where, as before, x = kDr12. This last step follows immediately when we realize that 

1 Nv( I k + nl) .(a) - + x ( - j d n k . n  1 47 

-/ ( 2 4 3 ~ 2  jk+n12+k,2 n2+kD2 k 2kD 

- 2 k . n  
k2 n+; -k  l + N ~ ( ( k + n l )  l+Nv(n)  4 4 5 ~ ) ~  ( 2 ~ r ) ~ k ~  jk+ n12 + k D 2  n2 + kD2 

and that 
2T - __ tan-1 (L) 477 

--= 
1 4n 

d n k . n  

the Fourier transform of exp( - 2kDr)/r2. 
T o  include all of the second-order terms, however, we must evaluate the last term in 

equation (17) more accurately. The  details are given in appendix 2, where it is shown by 
decoupling at a later stage that 

1 
* (23) 

Nv(n){l +exp( -in.r12)} (P"k ) 
1 + Nc(n) (p"k + ) - 1 + Nv(n) 1 + Nu( I k + n I ) (pk+n/7n*) - 

Replacing this expression in (17) and again solving by iteration starting with the random- 
phase value of (pk), we obtain, instead of (18), 

v(n){ 1 + exp( - in. rI2)) iVv( I k + nl )[ 1 + exp{i(k + n)  . rI2} 
k .  n 

1 1  
1 + Nu(%)  1 + Nc( j k + n 1 )  -- c - 

1 + N v ( k )  k2 n +  - k  

T h e  first term, of course, is that given in (18), but the second one is new and the contribu- 
tion it makes to U(r,,)/k,T through equation (7) is 

€2 e-?/ exp(-21y-z]) exp(-jz-xl) 

32n2 12-XI  
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Therefore, to second order in E, we have 

U(x)  e-" 2 e-u exp( -21x-yl) 
- = E - - + -  

k* T x 4T Y IX-Yl2  

e-9 exp(-2/y--zj) exp( - Iz-XI) -- 
32n2 12--XI 

e-" 
= E--+A&)+h&). X (26) 

This is the expression obtained by Bowers and Salpeter, and the correlation energy to 
order is given by 

The contribution from the first term has been given in equation (15) and the remaining 
contributions are $Ia dx xA,(x) = -+2(log 3 -log 2) 

*Jm dxxX,(x) = &2(log3-log2-+). 

0 
and 

0 

Together they give the exact result quoted in equation (1). 

order 2, that is 
I t  is quickly shown that with the result (26) the normalization integral is correct to 

n J dr{g(r) - 11 = - 1 + o ( E ~ ) ,  

3.3. Extension to large values of E 

Recently Brush et al., using a Monte Carlo method, have investigated the radial 
distribution function and thermodynamic properties of a one-component plasma over a 
wide range of values of E.  For the range of values they consider it is more appropriate to 
introduce the dimensionless parameter F = e2/r,kBT, where Y,, the radius of a sphere 
containing one electron, is given by 

I 4  - = gxy,3 
n 

and to express distances in terms of Y ,  rather than k,-l (E = 2 / 3 P 2 ) .  For I' N 2 the 
radial distribution function ceases to be monotonic, which is characteristic of the Debye- 
Huckel approximation, and begins to show oscillations due to the onset of short-range 
order. 

If we start from the exact result ( I f ) ,  the simplest approximation in an attempt to 
extend the present approach to high values of I' is to decouple the last term, that is to write 
(pk+n pn*) as (pk+,,)(pn*), so that the equation becomes 

The second term on the right-hand side of (17) arises from the interaction of particles 1 
and 2 with the other particles in the system, whilst the last term arises from the mutual 
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interaction of these particles. If, after decoupling, we replace ( p , * )  by its random-phase 
value, then (27) becomes 

-Nu(k){l  +exp(ik.r,,)} 

1 + Nv(k) (Pk) = 

1 1  + - 2  (1 + exp( - in.r12)l (Pk+ , )k. n. 1 + Nu(k) k2 , + - k 1 + 
Thus we see that the decoupling process approximately takes into account the mutual 
interaction by assuming that its effect is to screen the interaction between particles 1 and 2 
and the rest of the system, since 

Nv(n)  - k D 2  -- 
1 + fVu(n) n2 + kD2' 

It is hoped to discuss in a subsequent paper the consequences of this approximation by 
attempting a numerical solution of equation (27). 

4. Conclusions 
The  density-fluctuation approach appears to be an extremely useful way of discussing 

the equilibrium properties of a fluid with long-range interactions. The  method involves 
the calculation of an ensemble average of the reduced density fluctuation 

N 1 exp( - ik. rj) 

and, since this is related to the two-particle and three-particle distribution functions, 
information is obtained about both. 

3'=3 
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Append ix  1 
The result 

n J a r { g ( y ) - 1 )  = -1 

is a consequence of the model of a plasma we have chosen, namely electrons plus neutralizing 
background of positive charge, and can be seen from the following argument. The  radial 
distribution function for a one-component system, whose potential energy may be expressed 
as a sum of pair potentials +(r), has the well-known property that 

where the pressure p' is that given by the virial theorem, 

a+ p' = nkBT-&n2 drrg (y ) - .  s dr 
I n  this problem when we make the substitution 
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in the evaluation of g(r)  we are calculating the latter for a Coulomb potential +(r) = e2/r,  
and the isothermal compressibility (l/n)(&z/ap’)r in the above equation is that for a system 
of electrons without the background of positive charge. From the virial result, if we take 
the asymptotic limit 1 from g(r), the pressure p‘ contains the term 

both of which are infinite as V 3 00. Hence 

in this limit. However, in evaluating the usual expressions for the pressure p or energy E 
of the system of electrons and background charge we must carefully remove the k = O  
component in the Fourier transform of the potential + ( I ) ,  and this leads to the well-known 
resuits for this model, namely 

P =  

- 
E 
N 
_ -  

4 dr y{g(y) - l }  - 
dr 

Appendix 2 
To obtain the potential of average force to second order in E ,  the evaluation of the 

expression ( P k + n  Fn*) is required. By repeating the process used to obtain equation (6), 
it may quickly be shown that 

1 1 
Gp’Pn’* > = -P* n+;- n > -2 2 v(l)a( l )  (Pi - n f n ’ > n * 1  

n2 1 

-- C u ( l )  (P;-nPl‘*Pp >ne 1. 
1 

(AI) 
n2 I 

Some of the individual terms under the summation signs are of order N and must be 
treated separately. Hence, with p = k+n, we have 

1 C 

< P , ‘ f S ’ * )  O W )  if P = q 

~ ( l )  ( P ;  - nPl’*Pp’ > *  (A2) 
1 

-- u ( M O  + i - n P p ’ ) n * l - -  
n2 l # n , - k  n2 1 $ n, - k,k  + n 

It should be noted that 

and O( 1 )  otherwise. Since we are interested only in terms up to second order in E ,  we may 
drop the expressions involving a summation over a third wave number I since these give a 
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higher-order contribution. We shall also decouple the last two remaining terms in (AZ), 
and therefore 

If we refer back to equation (Al) with n = p, it follows immediately that within the random- 
phase approximation 

or, with p = k + n, the expression relevant to (A3) becomes 

N 
1 + Nv( 1 k + n I ) (P"k+ npg+ n ) 

which is sufficiently accurate to obtain results correct to order 2. With this further 
approximation, (A3) becomes 

Nv(n){l +exp( -in.r12)) <P"k ) 1 
1 + Nv(n) (P"k+n) - l+Nv(n )  l+Nv(lk+nj) (P"k+ nP"n* ) 2: - 

The last term is clearly of the same order as the terms which have been neglected, since to 
first order (pk) = ( p k ) R p A ,  so that we may drop it at this stage and 
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